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Abstract. We explore the orthogonal decomposition of tensors (also known as multi-dimensional
arrays or n-way arrays) using two different definitions of orthogonality. We present numerous ex-
amples to illustrate the difficulties in understanding such decompositions. We conclude with a
counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici
and Sabatier [Linear Algebra Appl. 269(1998):307–329].
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1. Introduction. The problem of decomposing tensors (also called n-way ar-
rays or multidimensional arrays) is approached in a variety of ways by extending the
singular value decomposition (SVD), principal components analysis (PCA), and other
methods to higher orders; see, e.g., [1, 3, 9, 10, 11, 12, 13, 14, 15]. Tensor decomposi-
tions are most often used for multimode statistical analysis and clustering, but may
also be used for compression of multidimensional arrays in ways similar to using a
low-rank SVD for matrix compression. For example, color images are often stored as
a sequence of RGB triplets, i.e., as separate red, green and blue overlays. An m× n
pixel RGB image is represented by an m × n × 3 array, and a collection of p such
images is an m×n×3×p array and can be compressed by a low-rank approximation.

The notation and basic properties of tensors are set forth in §2. Several definitions
of orthogonality and several rank orthogonal decompositions for tensors are given in
§3. Computational issues for orthogonal decompositions are discussed in §4. Finally
in §5, we present a counterexample to Leibovici and Sabatier’s extension to tensors
of the well-known Eckart-Young SVD approximation theorem [13].

2. Tensors. Let A be an m1 ×m2 × · · · ×mn tensor over R. The order of A is
n. The jth dimension of A is mj . An element of A is specified as

Ai1i2···in ,

where ij ∈ {1, 2, . . . ,mj} for j = 1, . . . , n. The set of all tensors of size m1 ×m2 ×
· · ·×mn is denoted by T (m1,m2, . . . ,mn). The shorthand Tn may be used when only
the order needs to be specified, or just T may be used when the order and dimensions
are unambiguous.

Let A,B ∈ T (m1,m2, . . . ,mn). The inner product1 of A and B is defined as

A ·B ≡
m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

Ai1i2···inBi1i2···in .
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Livermore, CA 94551–9217, tgkolda@sandia.gov.
1In [13], the term is “contracted product” and the notation is 〈A,B〉.
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Correspondingly, the norm of A, ‖A‖, is defined as

‖A‖2 ≡ A ·A =
m1∑
i1=1

m2∑
i2=1

· · ·
mn∑
in=1

A2
i1i2···in .

We say A is a unit tensor if ‖A‖ = 1.
Example 2.1. Let x, y ∈ T (m); that is, x, y are vectors in Rm. Then x · y = xT y

where the superscript T denotes transpose.
A decomposed tensor is a tensor U ∈ T (m1,m2, . . . ,mn) that can be written as

U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(n),(2.1)

where ⊗ denotes the outer product and each u(j) ∈ Rmj for j = 1, . . . , n. The vectors
u(j) are called the components of U . In this case,

Ui1i2···in = u
(1)
i1
u

(2)
i2
· · ·u(n)

in
.

A decomposed tensor is a tensor of rank one for all the definitions of rank that we
present in the next section. Decomposed tensors form the building blocks for tensor
decompositions. The set of all decomposed tensors of size m1 × m2 × · · · × mn is
denoted by D(m1,m2, . . . ,mn) with shorthands analogous to T .

Lemma 2.2. Let U, V ∈ D where U is defined as in (2.1) and V is defined by

V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(n).(2.2)

Then

(a) U · V =
n∏
j=1

u(j) · v(j), (b) ‖U‖ =
n∏
j=1

‖u(j)‖2,

and, (c) U + V ∈ D if and only if all but at most one of the components of U and V
are equal (within a scalar multiple).

Proof. Items (a) and (b) follow directly from the definitions. For item (c), consider
U, V ∈ D such that n−1 components are equal, i.e., u(i) = v(i) for i = 2, . . . , n. Then
W ≡ U + V can be written as

W = w(1) ⊗ u(2) ⊗ · · · ⊗ u(n),

where w(1) = u(1) + v(1), so the “if” statement of (c) is true. Next we show the “only
if” statement of (c). First consider the special case where n = 2, m1 = m2 = 2,

U ≡
[
a
b

]
⊗
[
c
d

]
, V ≡

[
e
f

]
⊗
[
g
h

]
,

and W ≡ U + V ∈ D. Since W ∈ D, we can write it as

W ≡
[
p
q

]
⊗
[
r
s

]
.

Then, we have

pr = ac+ eg,(2.3)
ps = ad+ eh,(2.4)
qr = bc+ fg,(2.5)
qs = bd+ fh.(2.6)
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Dividing (2.3) by (2.5) and (2.4) by (2.6) yields two ratios for p/q, and setting those
equals gives

ac+ eg

bd+ fh
=
bc+ fg

ad+ eh
.(2.7)

Cross-multiplying and simplifying (2.7) finally yields

(af − be)(ch− dg) = 0.

In other words, either u(1) = v(1) or u(2) = v(2) (within a scalar multiple). So, all but
at most one of the components of U and V must match if W ∈ D. This argument
can be extended to arbitrary n and mj .

We have shown that for two decomposed tensors to be combined to one decom-
posed tensor, they must match in all but at most one component. The same is not
necessarily true, however, when combining three or more decomposed tensors, as
shown in the next example.

Example 2.3. Consider the following example. Let a, b ∈ Rm with a⊥b and
‖a‖ = ‖b‖ = 1. Define c = 1√

2
(a+ b), and

U1 = a⊗ a⊗ a, U2 = a⊗ b⊗ c, U3 = a⊗ c⊗ b.

Then the sum of theses three decomposed tensors can be rewritten as the sum of two
despite the fact that they only match in one component:

U1 + U2 + U3 =

√
3
2

(V1 + V2) ,

where

V1 = a⊗ d⊗ a, V2 = a⊗ e⊗ b,

with

d =

√
2
3
a+

√
1
3
b, e =

√
2
3
c+

√
1
3
b.

This is the result of splitting U2 into two pieces based on the third component.
We may also operate on tensors of different sizes. Specifically, tensors of different

orders may be multiplied as follows. Suppose C ∈ T (m1, . . . ,mj−1,mj+1, . . . ,mn) is
a tensor of order n− 1 (note that mj is missing). Then the contracted product2 of A
and C is a vector of length mj , and its ijth (1 ≤ ij ≤ mj) element is defined as

〈A · C〉(j)ij ≡
m1∑
i1=1

· · ·
mj−1∑
ij−1=1

mj+1∑
ij+1=1

· · ·
mn∑
in=1

Ai1···ij−1ijij+1···inCi1···ij−1ij+1···in .

Note that the superscript on the bracketed product indicates which dimension is
missing in the lower-order tensor C.

Example 2.4. Suppose A ∈ T (m1,m2) is a tensor of order two, i.e., A is a matrix.
If b ∈ T (m1), then 〈A · b〉(2) = AT b in matrix notation. Similarly, if c ∈ T (m2), then
〈A · c〉(1) = Ac.

2In [13], the notation A .. C is used for contracted products.
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Lemma 2.5. Let U ∈ D as defined in (2.1) and A ∈ T . Then

A · U =
〈
A · u(1) ⊗ · · · ⊗ u(j−1) ⊗ u(j+1) ⊗ · · · ⊗ u(n)

〉(j)

· u(j).

Proof. Follows from the definitions.

3. Orthogonal Rank Decompositions.

3.1. Notions of Orthogonality. Let U, V ∈ D be defined as in (2.1) and (2.2)
respectively. Without loss of generality, we assume ‖U‖ = ‖V ‖ = 1 and that the
components are unit vectors. We say that U and V are orthogonal (U⊥V ) if

U · V =
n∏
j=1

u(j) · v(j) = 0.

We say that U and V are completely orthogonal (U⊥cV ) if for every j = 1. . . . , n,

u(j)⊥v(j).

We say that U and V are strongly orthogonal (U⊥sV ) if U⊥V and for every j =
1, . . . , n,

u(j) = ± v(j) or u(j)⊥v(j).

From the definition of strong orthogonality, it follows that at least one pair must
satisfy u(j)⊥v(j) since we require U⊥V . Note that we could write u(j) = ± v(j) more
generally as u(j) = λj v

(j) for some λj 6= 0, which is useful when ‖U‖ 6= ‖V ‖.
The relationship between the different orthogonality definitions is given in the

following lemma.
Lemma 3.1. Let the decomposed tensors U and V of order n be defined as in

(2.1) and (2.2) respectively. Then

U⊥cV ⇒ U⊥sV ⇒ U⊥V.

3.2. Rank Decompositions. Our goal is to express a tensor A ∈ T as a
weighted sum of decomposed tensors,

A =
r∑
i=1

σiUi,(3.1)

where σi > 0 for i = 1, . . . , r and each Ui ∈ D and ‖Ui‖ = 1 for i = 1, . . . , r.
• The rank ofA, denoted rank(A), is defined to be the minimal r such thatA can

be expressed as in (3.1). The decomposition is called the rank decomposition.
• The orthogonal rank of A, denoted rank⊥(A), is defined to be the minimal
r such that A can be expressed as in (3.1) and Ui⊥Uj for all i 6= j. The
decomposition is called the orthogonal rank decomposition.
• The strong orthogonal rank of A, denoted rank⊥s(A), is defined to be the

minimal r such that A can be expressed as in (3.1) and Ui⊥sUj for all i 6= j.
The decomposition is called the strong orthogonal rank decomposition.3

3In [13], the terms “free orthogonal rank” and “free rank decomposition” are used rather than
“strong orthogonal rank” and “strong orthogonal rank decomposition”.



ORTHOGONAL TENSOR DECOMPOSITIONS 5

As reported in [13], the definition of rank is due to Kruskal, although it was
proposed even earlier by Strassen and others (see [11] and references therein), and the
definitions of orthogonal and strong orthogonal rank is due to Franc [7]. The general
decomposition, orthogonal decomposition, and strong orthogonal decomposition satisfy
the orthogonality constraints (if any) but are not necessarily minimal in terms of r.
For matrices, all three rank decompositions are equivalent to the SVD.

Lemma 3.2. The rank, orthogonal rank, and strong orthogonal rank decomposi-
tion are each equivalent to the SVD for tensors of order two.

Proof. This follows from the properties of the SVD (c.f., [8]).
In our discussion of rank decomposition, we did not present a completely orthogo-

nal decomposition. In fact, we are not in general guaranteed that such a decomposition
can be found, as we discuss later in this section.

A slightly different notion of rank that depends on special orthogonal decompo-
sition is the combinatorial orthogonal rank, denoted rank⊥t(A). It is defined as the
minimal r such that A can be written as

r∑
i1=1

r∑
i2=1

· · ·
r∑

in=1

σi1i2···in u
(1)
i1
⊗ u(2)

i2
⊗ · · ·u(n)

in
,(3.2)

where σi1i2···in > 0; u(j)
i ∈ Rmj with ‖u(j)

i ‖ = 1 for 1 ≤ i ≤ r and 1 ≤ j ≤ n; and
further, u(j)

i1
⊥u(j)

i2
for all i1 6= i2, 1 ≤ i2, i2 ≤ r, 1 ≤ j ≤ n. Equivalently, let

Ui = u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(n)
i ,

and require Ui1⊥cUi2 for all i1 6= i2, 1 ≤ i1, i2 ≤ r, and ‖Ui‖ = 1, 1 ≤ i ≤ r. In other
words, the decomposition (3.2) is the result of combining the components of the Ui’s
in every possible way and is called the combinatorial orthogonal rank decomposition.
In this case, there are rn scalar multiples (i.e., σ-values) that are involved rather
than just r as in the other decompositions. This is the Tucker decomposition with
orthogonality constraints [14], hence the subscript in the notation. Note that the SVD
of a matrix is a combinatorial orthogonal rank decomposition, but the reverse is not
necessarily true.

Now we consider several examples that illustrate that the rank decompositions
are not necessarily unique.

Example 3.3. Let a, b ∈ Rm with a⊥b and ‖a‖ = ‖b‖ = 1, and let σ1 > σ2 > σ3 >
0. Define A ∈ T (m,m,m) as

A = σ1 a⊗ b⊗ b︸ ︷︷ ︸
U1

+ σ2 b⊗ b⊗ b︸ ︷︷ ︸
U2

+ σ3 a⊗ a⊗ a︸ ︷︷ ︸
U3

.(3.3)

Note that Ui⊥sUj for all i 6= j, so (3.3) is a strong orthogonal decomposition of A.
Furthermore, A cannot be expressed as the sum of fewer weighted strong orthogonal
decomposed tensors, so the strong orthogonal rank of A is three. Observe that A can
also be expressed as

A = σ̂1 â⊗ b⊗ b︸ ︷︷ ︸
Û1

+ σ̂2 â⊗ a⊗ a︸ ︷︷ ︸
Û2

+ σ̂3 b̂⊗ a⊗ a︸ ︷︷ ︸
Û3

,(3.4)

where

σ̂1 =
√
σ2

1 + σ2
2 , σ̂2 =

σ1 σ3

σ̂1
, σ̂3 =

σ2 σ3

σ̂1
,
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â =
σ1 a+ σ2 b

σ̂1
, and b̂ =

σ2 a− σ1 b

σ̂1
.

Since â⊥b̂, we have Ûi⊥sÛj for all i 6= j. Therefore (3.4) is also a strong orthogonal
rank decomposition of A, and so the strong orthogonal rank decomposition is not
unique.

Example 3.4. Consider the tensor A as defined by (3.3); A can also be written as

A = σ̄Ū + σ3U3,(3.5)

where

σ̄ =
√
σ2

1 + σ2
2 and Ū =

σ1 a+ σ2 b

σ̄
⊗ b⊗ b.

Observe that Ū⊥U3; in fact, (3.5) is an orthogonal rank decomposition of A, and
therefore the orthogonal rank of A is two. An alternative orthogonal rank decompo-
sition of A is given by

A = σ̃ Ũ + σ2U2,(3.6)

where

σ̃ =
√
σ2

1 + σ2
3 and Ũ = a⊗ σ1 b+ σ3 a

σ̃
⊗ b.

Note that Ũ⊥Û2, so (3.6) is also an orthogonal rank decomposition of A and the
orthogonal rank decomposition is not unique.

Lemma 3.5. Neither the orthogonal rank, strong orthogonal rank, nor combina-
torial orthogonal rank decomposition is unique.

Proof. See Examples 3.3 and 3.4.
Although the singular value decomposition for matrices in known to be unique

up to rotation [8], the rank tensor decompositions are not. This is an important
difference which we return to later in this section.

Example 3.6. We show how to ‘orthogonalize’ a tensor in a relatively simple
situation. Suppose that we have an order three tensor A ∈ T (m1,m2,m3) defined as
follows:

A = σ1U + σ2V,

where σ1 ≥ σ2 and,

U = u(1) ⊗ u(2) ⊗ u(3),

V = v(1) ⊗ v(2) ⊗ v(3),

with u(i), v(i) unequal, non-orthogonal unit vectors in Rmi for i = 1, 2, 3.
For i = 1, 2, 3, we can decompose v(i) as

v(i) = α(i)u(i) + α̂(i)û(i),

where

α(i) = v(i) · u(i),

α̂(i) = ‖v(i) − α(i)u(i)‖, and
û(i) = (v(i) − α(i)u(i))/α̂(i).
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Then, we can rewrite A as

A = (σ1 + σ2 α
(1)α(2)α(3)) u(1) ⊗ u(2) ⊗ u(3)

+ σ2 α
(1)α(2)α̂(3) u(1) ⊗ u(2) ⊗ û(3)

+ σ2 α
(1)α̂(2)α(3) u(1) ⊗ û(2) ⊗ u(3)

+ σ2 α
(1)α̂(2)α̂(3) u(1) ⊗ û(2) ⊗ û(3)

+ σ2 α̂
(1)α(2)α(3) û(1) ⊗ u(2) ⊗ u(3)

+ σ2 α̂
(1)α(2)α̂(3) û(1) ⊗ u(2) ⊗ û(3)

+ σ2 α̂
(1)α̂(2)α(3) û(1) ⊗ û(2) ⊗ u(3)

+ σ2 α̂
(1)α̂(2)α̂(3) û(1) ⊗ û(2) ⊗ û(3).

(3.7)

Equation (3.7) shows that rank⊥s(A) ≤ 8. Because of the way U and V were chosen
(components neither equal nor orthogonal), equation (3.7) is a strong orthogonal
rank decomposition of A, and rank⊥s(A) = 8. (From Equation (3.7), we can also
deduce that rank⊥t(A) = 2.) This is not, however, an orthogonal rank decomposition.
Combining each pair of lines in (3.7), we get

A =
√
γ2 + γ̂2 u(1) ⊗ u(2) ⊗ (γu(3) + γ̂û(3))/

√
γ2 + γ̂2

+ σ2 α
(1)α̂(2) u(1) ⊗ û(2) ⊗ v(3)

+ σ2 α̂
(1)α(2) û(1) ⊗ u(2) ⊗ v(3)

+ σ2 α̂
(1)α̂(2) û(1) ⊗ û(2) ⊗ v(3).

(3.8)

where

γ = σ1 + σ2 α
(1)α(2)α(3) and γ̂ = σ2 α

(1)α(2)α̂(3).

Finally, combining the last two lines of (3.8), we arrive at an orthogonal rank decom-
position,

A =
√
γ2 + γ̂2 u(1) ⊗ u(2) ⊗ (γu(3) + γ̂û(3))/

√
γ2 + γ̂2

+ σ2 α
(1)α̂(2) u(1) ⊗ û(2) ⊗ v(3)

+ σ2 α̂
(1) û(1) ⊗ v(2) ⊗ v(3),

so rank⊥(A) = 3. Note that combining vectors from (3.7) in different order would
have resulted in a different orthogonal rank decomposition.

We now see some relationship between the different ranks, stated formally in the
next theorem.

Theorem 3.7 ([13]). For a given tensor A,

rank(A) ≤ rank⊥(A) ≤ rank⊥s(A).(3.9)

Further, for any order n > 2, there exists A ∈ Tn such that strict inequality holds.
Proof. The first part follows from Lemma 3.1. An example of strict inequality

for a tensor of order three (n = 3) is given in Example 3.6, and that example can be
generalized to any order.

For a matrix, all four definitions of tensor rank reduce to the standard definition
of matrix rank.

Corollary 3.8 ([13]). For any A ∈ T2,

rank(A) = rank⊥(A) = rank⊥s(A) = rank⊥t(A).
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Proof. This follows from Lemma 3.2.
Earlier we mentioned the notion of a completely orthogonal decomposition; this

corresponds to a combinatorial orthogonal decomposition in which only the diago-
nal elements (σii···i) are nonzero; and so, in general, tensors cannot be diagonalized.
A similar observation was made by Denis and Dhorne [4]. When a tensor can be
diagonalized, all the ranks are equal.

Corollary 3.9 ([13]). For any order n > 2, there exists A ∈ Tn such that
A cannot be decomposed as the weighted sum of completely orthogonal tensors. If a
tensor can be decomposed as the weighted sum of completely orthogonal decomposed
tensors, then equality holds in (3.9).

Proof. See the construction of the decompositions of A in Example 3.6 to prove
the first statement. The second statement follows intuitively from the fact that each
subspace has dimension r, and the rank of the tensor cannot be less than the smallest-
dimensional subspace.

Franc [6] made similar observations to Theorem 3.7 and Corollary 3.9. Matrices
(i.e., tensors of order two) are special cases that always have a completely orthogonal
decomposition, as follows from Corollaries 3.8 and 3.9.

We now return to the concept of uniqueness in the rank decomposition. We have
several examples illustrating that the strong orthogonal rank and orthogonal rank
decompositions are not unique. A partial ‘fix’ for lack of uniqueness is the following.
Without loss of generality, assume that the σi’s in (3.1) are always ordered so that
σ1 ≥ σ2 ≥ · · · ≥ σr. Then define the unique (strong) orthogonal rank decomposition
to be the (strong) orthogonal rank decomposition that has the largest possible σ1, and
given that choice for σ1, has the largest possible σ2, and so forth. This decomposition
is unique in the sense that the weights are unique. The unit decomposed tensors are
unique if and only if no two σi’s are equal, similar to the fact that the SVD is unique
up to rotation. A unique combinatorial orthogonal rank decomposition can be defined
in a more complicated way by sequentially choosing each Uk so that

k∑
i1=1

k∑
i2=1

· · ·
k∑

in=1

σ2
i1i2···in ,

is maximized.
Example 3.10. In Example 3.3, the unique strong orthogonal rank decomposition

is given by (3.4). Similarly, in Example 3.4, the unique orthogonal rank decomposition
is given by (3.5).

4. Greedy Tensor Decompositions. We now consider the computation of an
orthogonal decomposition and present a method for generating a greedy orthogonal
decomposition. Our goal is to compute a sequence (for p = 1, 2, . . .) of weighted
decomposed tensors such that

A =
p∑
i=1

σiUi,

where Ui⊥Uj for all i 6= j and ‖Ui‖ = 1 for all i. We call this the greedy orthogonal
decomposition because the {σ,U} pairs are computed iteratively. We do not yet
make any claims as to whether or not this greedy orthogonal decomposition yields an
orthogonal rank decomposition.
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In the greedy orthogonal decomposition, define the kth residual tensor as

Rk ≡ A−
k∑
i=1

σiUi,

with R0 = A, and let the set of tensors Uk be defined as

Uk = {U1, U2, . . . , Uk},

with U0 = ∅. Our goal is to find the best rank-1 approximation to the current residual
subject to orthogonality constraints; that is, we wish to solve

min fk(σ,U) ≡ ‖Rk − σU‖2, s.t. U ∈ D, ‖U‖ = 1, U⊥Uk.

We can rewrite fk as

fk(σ,U) = ‖Rk‖2 − 2σRk · U + σ2‖U‖2.

At the solution, we have

∂fk
∂σ
≡ −2Rk · U + 2σ‖U‖2 = 0,

so we can solve for σ and conclude that minimizing fk is the same as solving

max Rk · U, s.t. U ∈ D, ‖U‖ = 1, U⊥Uk.(4.1)

We define Uk+1 to be the solution of (4.1), and let σk+1 = Rk · Uk+1. We repeat the
process until Rk+1 = 0.

A greedy strong orthogonal decomposition can be similarly described, and reduces
to solving

max Rk · U, s.t. U ∈ D, ‖U‖ = 1, U⊥s Uk,(4.2)

at each iteration. Likewise, We may also construct a sort of greedy approach for the
combinatorial orthogonal decomposition.

Lemma 4.1. The greedy orthogonal, strong orthogonal, and combinatorial decom-
positions are finite.

Proof. This is a consequence of the fact that there are at most M =
∏n
j=1mj

orthogonal or strong orthogonal decomposed tensors.
Solving (4.1) or (4.2) is a very challenging task. For example, in order to solve

(4.1), we might use an alternating least squares (ALS) approach as follows. For ` =
1, . . . , n, fix all components of U but the `th, and solve

max s · u(`), s.t. ‖U‖ = 1, U⊥Uk

where

s =
〈
Rk · u(1) ⊗ · · · ⊗ u(`−1) ⊗ u(`+1) ⊗ · · · ⊗ u(n)

〉(`)

.

The difficulty with this approach is in enforcing the constraints.
Zhang and Golub [15] explore various computational techniques when the tensor

has a completely orthogonal decomposition, in which case the problem is much sim-
pler. In [13], the RPVSCC method uses ALS to find the modes, i.e., the completely
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orthogonal decomposed tensors, and then fills in the values associated with the com-
binations of the components of the modes. De Lathauwer [3] presents several ALS
methods for computing the HOSVD. Kroonenberg and Jan de Leeuw [10] propose
an ALS solution to (3.2) so that at each step an entire set {u(j)

i }
mj
i=1 is solved for

some j while everything else is fixed. In other words, the method concentrates on one
subspace at a time.

5. Approximation of a Tensor. The well-known Eckart-Young approximation
theorem [5, 8] says that if the SVD of a matrix is given by

A =
r∑
i=1

σiuiv
T
i ,

with σ1 ≥ σ2 ≥ . . . ≥ σr > 0, then the best rank-k approximation is given by

Ak ≡
k∑
i=1

σiuiv
T
i .

A consequence of this result is that the SVD can be computed via a greedy method
which calculates each triplet {σi, ui, vi} in sequence. Now we can ask whether or not
the Eckart-Young theorem can be extended to tensor rank decompositions; i.e., is the
best rank-k approximation of a tensor given by the sum of the first k terms in its
rank decomposition? This relates directly to whether or not the greedy orthogonal,
strong orthogonal, or combinatorial decompositions produce a corresponding rank
decomposition.

In the case of the strong orthogonal rank decomposition, the answer is definitely
no, contrary to the result stated in [13], as the following counterexample shows.

Example 5.1. Consider the strong orthogonal rank decomposition of a matrix
A ∈ T (m,m,m) defined by

A =
6∑
i=1

σiUi,

where the {σi, Ui} pairs are defined as follows. Let the vectors a, b, c, d ∈ Rm be
two-by-two orthogonal; then let

σ1 = 1.00, U1 = a⊗ a⊗ a,
σ2 = 0.75, U2 = b⊗ b⊗ b,
σ3 = 0.70, U3 = a⊗ c⊗ d,
σ4 = 0.70, U4 = a⊗ d⊗ c,
σ5 = 0.65, U5 = b⊗ c⊗ d,
σ6 = 0.65, U6 = b⊗ d⊗ c.

Note that σ3U3 and σ5U5 can be combined to form the decomposed tensor

γ1V1 ≡
√
σ2

3 + σ2
5

σ3a+ σ5b√
σ2

3 + σ2
5

⊗ c⊗ d.(5.1)

Similarly, σ4U4 and σ6U6 can be combined to form

γ2V2 ≡
√
σ2

4 + σ2
6

σ4a+ σ6b√
σ2

4 + σ2
6

⊗ d⊗ c.(5.2)
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But,

γ1 = γ2 ≈ 0.9552 < σ1 = 1,

so neither (5.1) nor (5.2) is the best rank one approximation to A; A1 ≡ σ1U1 is.
However, the best strong orthogonal rank two approximation is given by

A2 ≡ γ1V1 + γ2V2,

because V1⊥sV2 and

γ2
1 + γ2

2 = 1.825 > σ2
1 + σ2

2 = 1.5625.

Thus, we have a counterexample to any Eckart-Young type theorem for strong or-
thogonal rank decompositions.

Example 5.1 can be reworked as follows to show that the combinatorial orthogonal
rank decomposition does not yield a best rank-k approximation either.

Example 5.2. Consider the tensor defined in Example 5.1. Let e and f be any
vectors that are orthogonal to each other and also to a and b. We can express a
combinatorial orthogonal rank decomposition of A as follows.

A =
4∑

i1=1

4∑
i2=1

4∑
i3=1

σ̄i1i2i3 ū
(1)
i1
⊗ ū(2)

i2
⊗ ū(3)

i3
,

where

Ū1 = a⊗ a⊗ a, Ū3 = e⊗ c⊗ d,
Ū2 = b⊗ b⊗ b, Ū4 = f ⊗ d⊗ c,

and the only non-zero σ̄’s are

σ̄111 = σ1, σ̄222 = σ2, σ̄133 = σ3, σ̄233 = σ4, σ̄144 = σ5, σ̄244 = σ6.

So, rank⊥t(A) = 4. The best combinatorial orthogonal rank-1 approximation to A is
Ā1 = σ̄111Ū1 = σ1U1 (the same as the best strong orthogonal rank-1 approximation).
But, the best combinatorial orthogonal rank-2 approximation is yielded by

Ā2 =
2∑

i1=1

2∑
i2=1

2∑
i3=1

γ̄i1i2i3 v̄
(1)
i1
⊗ v̄(2)

i2
⊗ v̄(3)

i3
.

Here

V̄1 ≡ V1 and V̄2 ≡ g ⊗ d⊗ c,

where g is some vector orthogonal to v(1)
1 , and the only nonzero γ̄’s are γ̄111 = γ1 and

γ̄122 = γ2.
The problem of whether or not the Eckart-Young result can be extended to the

orthogonal decomposition is still an open question. Example 2.3 shows that it is
possible to add an orthogonal decomposed tensor to a sum without increasing its
rank (U1 + U2 has rank 2 as does U1 + U2 + U3). This is contrary to a fundamental
assumption used in the proof of Theorem 2 in [13]. We also have the problem of
uniqueness since, by Example 3.4, we know that the orthogonal decomposition is not
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unique. One possible solution to this problem is the definition proposed on p. 8. We
now seek either a proof or counterexample of the following.

Open Problem 5.3 (Eckart-Young extended). Let the unique orthogonal rank
decomposition of a tensor A be given as in (3.1) and assume that σ1 ≥ σ2 ≥ · · · ≥ σr.
Then the best orthogonal rank p (p < r) approximation to A satisfies

min
rank⊥Ap=p

‖A−Ap‖2 =
r∑

i=p+1

σ2
i

and is given by

Ap ≡
p∑
i=1

σiui.

6. Conclusions. There are multiple ways to orthogonally decompose tensors,
depending both on the definition of orthogonality as well as on the definitions of
decomposition and rank. An Eckart-Young type of best rank-k approximation theo-
rem for tensors continues to elude our investigations but can perhaps eventually be
attained by using a different norm or yet other definitions of orthogonality and rank.

Computing an orthogonal tensor decomposition is a challenge as well. Most meth-
ods are variations on ALS, a method which can be very slow to converge, although
recently several authors (c.f., [3, 15]) have presented new ideas.
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